- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Youmans, William (3)
-
Biasse, Jean-François (2)
-
Bai, Shi (1)
-
Bonnetain, Xavier (1)
-
Fieker, Claus (1)
-
Hofmann, Tommy (1)
-
Jangir, Hansraj (1)
-
Ngo, Tran (1)
-
Pring, Benjamin (1)
-
Schrottenloher, André (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Biasse, Jean-François; Fieker, Claus; Hofmann, Tommy; Youmans, William (, Advances in Mathematics of Communications)
-
Biasse, Jean-François; Bonnetain, Xavier; Pring, Benjamin; Schrottenloher, André; Youmans, William (, Journal of Mathematical Cryptology)null (Ed.)Abstract We propose a heuristic algorithm to solve the underlying hard problem of the CSIDH cryptosystem (and other isogeny-based cryptosystems using elliptic curves with endomorphism ring isomorphic to an imaginary quadratic order 𝒪). Let Δ = Disc(𝒪) (in CSIDH, Δ = −4 p for p the security parameter). Let 0 < α < 1/2, our algorithm requires: A classical circuit of size 2 O ˜ log ( | Δ | ) 1 − α . $$2^{\tilde{O}\left(\log(|\Delta|)^{1-\alpha}\right)}.$$ A quantum circuit of size 2 O ˜ log ( | Δ | ) α . $$2^{\tilde{O}\left(\log(|\Delta|)^{\alpha}\right)}.$$ Polynomial classical and quantum memory. Essentially, we propose to reduce the size of the quantum circuit below the state-of-the-art complexity 2 O ˜ log ( | Δ | ) 1 / 2 $$2^{\tilde{O}\left(\log(|\Delta|)^{1/2}\right)}$$ at the cost of increasing the classical circuit-size required. The required classical circuit remains subexponential, which is a superpolynomial improvement over the classical state-of-the-art exponential solutions to these problems. Our method requires polynomial memory, both classical and quantum.more » « less
An official website of the United States government
